[2C & USB 2.0

Lecture 6

Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.


https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

[2C & USB 2.0

used by RP2040

= Buses
= Inter-Integrated Circuit

»  Universal Serial Bus v2.0



[2C

Inter-Integrated Circuit



Bibliography

for this section

1. Raspberry Pi Ltd, RP2350 Datasheet

=  Chapter 12 - Peripherals
= Chapter 12.2-12C

2. Paul Denisowski, Understanding 12C


https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://www.youtube.com/watch?v=CAvawEcxoPU

[2C

a.k.a I square C

= Used for communication between integrated circuits
= Sensors usually expose an SPI and an I2C interface
=  Two device types:
= controller (master) - initiates the communication (usually MCU)

= target (slave) - receive and transmit data when the controller requests (usually the sensor)

1 1

! 1
Controller

1 1

1 1

Target Target Target
@0x17 @0x12 @0x5e




Wires & Addresses

= SDA - Serial DAta line - carries data from the controller to the target or from the target to the controller
m  SCL - Serial CLock line - the clock signal generated by the controller, targets
= sample data when the clock is low
= write data to the bus only when the clock is high
= each target has a unique address of 7 bits or 10 bits
= wires are never driven with LOW or HIGH

= are always pull-up, which is HIGH

= devices pull down the lines to write LOW

VAV AW A aVaWAWAWE WA VW ! : !
1 1 1
/ , Controll
sDA 7san}Z{___address ] payioad bytes | ) ack (stop)7 o : ! :
1

Target Target Target
@0x17 @0x12 @O0x5e




Transmission Example

7 bit address
1. controller issues a START condition 5. controller or target sends data (depends on R/W )
= pulls the SDA line LOW = receives ACK / NACK after every byte

= waits for ~ 1/2 clock periods and starts the clock 6. controller issues a STOP condition
2. controller sends the address of the target = stops the clock
3. controller sends the command bit ( R/W ) = pulls the SDA line HIGH while CLK is HIGH

4. target sends ACK / NACK to controller
Address Format

7 1 0
l 7 bit address R/W

Address 1 - Read
0 - Write

Transmission

SDA \ /a6 )Y a5 Y a4 a3 \ a2 (a1 Y a0 Y riw Y ack (byte1 [ Y ack X byte2 ]/ Xack\ /
data Z(start)@( address Xemd Y7 payload bytes //_W %stop)@




Transmission Example

10 bit address
1. controller issues a START condition 7. controller or target sends data (depends on R/W )
2. controller sends 11110 followed by the upper = receives ACK / NACK after every byte

address of the target 8. controller issues a STOP condition

3. controller sends the command bit ( R/W )
Address Format
4. target sends ACK / NACK to controller
15 11 10 9 8 7 0
5. controller sends the lower address of the target | e TS e \“"";;;:jfss\jggaj Sahislon
0 - Write

6. target sends ACK / NACK to controller
Transmission

sbA \ [ \_ /a9 Y a8 Yiw Y ack \ a7 X a6 Y a5 Y a4 Y a3 Y a2 ) a1 ¥ a0 Y ack \_ bytet ]/ Y ack Y byteZ/ZXack\ /

data 7Ystart¥77 7Xupper addr cmd ¥\ lower address X A payload bytes /| Y stop\/.

controller writes each bit when CLK is LOW ,target samples every bit when CLK is HIGH



[12C Modes

Mode

Standard mode (Sm)
Fast mode (Fm)

Fast mode plus (Fm+)
High-speed mode (Hs)
High-speed mode (Hs)

Ultra-fast mode (UFm)

Speed

100 kbit/s

400 kbit/s

1 Mbit/s

1.7 Mbit/s

3.4 Mbit/s

5 Mbit/s

Capacity

400 pF

400 pF

550 pF

400 pF

100 pF

Drive

Open drain

Open drain

Open drain

Open drain

Open drain

Push—pull

Direction

Bidirectional

Bidirectional

Bidirectional

Bidirectional

Bidirectional

Unidirectional



Facts

Transmission
Clock

Wires

Devices

Speed

half duplex

synchronized

SDA / SCL

1 controller
several
targets

5 Mbit/s

data must be sent in one direction at one time
the controller and target use the same clock, there is no need for clock

synchronization

the same read and write wire and a clock wire

areceiver and a transmitter

usually 100 Kbit/s, 400 Kbit/s and 1 Mbit/s



sage

Sensors

small displays

RP2350 has two I12C devices

Power

Ground

UART / UART (default)
GPIO, P10, and PWM
ADC

SPI / SPI (default)
12C / 12C (default)

Debugging

UARTOTX | 12C0 SDA] SPio RX_J-GRO- i}
2
IEITE 3

[12c1 5DA ¥ spio sck | GP2 Rl
[j2ciscL ) seiorx 1GR3 R
JUARTITX] 1200 SDA | SPI0RX_JGR4R0)
LuarTiRX Y 12c0 scL | spiocsn § GRS )
GND 8

L1201 5DA § sPio scK |GP6 RU)
[j2ciscL ) sPioTx | Gh7 —Ri)
JUARTITX ] 12C0 SDA ] _sPiiRX | —GP8 Rl
LuaRTI RX ] i2c0SCL ] SPi1 csn | GPo R
|_c\o__REl

1201 5DA § spi1 sck | GPi0 BT}

15
JuarToTx} 12c0 SDA | sPii X | —GPi2 R}
LuaRTORX Y i2c0scL | spiicsn | GP13 —REj
|_cNo R

[ 1201 5DA § spi1 sck | —GPia R

[ 2ciscL ) spiiTx | GPis ki)

3
o
.
.
.
.
3
3
3
.
o
.
.
3
.
3
3
.
3
°

(S2d9) 431

.., BOOTSEL Fmmg

2020

.Raspberry Pi Pico ©

ANO
0ldMS

40 IRETSE

39 VSVS

38

37

36 3V3(OUT)

3

34 TN TP

Ed

i GP27 ] Abci | 1201 SCL |
Bl GP26 ] ADCO ] 12C1 SDA |
30

2

28 GN[I

27 IS
25 I
P GP19-§ spioTx | i2c1 Sc |
k24 G181 SPI0 SCK | 12C1 SDA |
2

2 = 12C0 SCL_§ UARTO RX
Bl GPI6 ] sPioRx ] 12C0 SDA JUARTOTX



Embassy API

for RP2350, synchronous

pub struct Config { pub enum ConfigError {
/// Frequency. /// Max i2c speed is 1MHz
pub frequency: u32, FrequencyTooHigh,
} ClockTooSlow,
ClockTooFast,
3
1 use embassy_rp::i2c::Config as I2cConfig;
2
3 let sda = p.PIN_14;
4 let scl = p.PIN_15;
5 let mut i2c = i2c::I2c::new_blocking(p.I2C1, scl, sda, I2cConfig::default());
6
7 let tx_buf = [0x907;
8 i2c.write(@x5e, &tx_buf).unwrap();
9
10 let mut rx_buf = [0x00u8; 77;
11 i2c.read(@x5e, &mut rx_buf).unwrap();
12
13 i2c.write_read(@x5e, &tx_buf, &mut rx_buf).unwrap();

pub enum Error {
Abort(AbortReason),
InvalidReadBufferLength,
InvalidWriteBufferLength,
AddressOutOfRange(ul6),
AddressReserved(ul6),



Embassy API

for RP2350, asynchronous

O 00 N O L1 D N N B

10
11
12
13
14
15
16
17

use

embassy_rp::i2c::Config as I2cConfig;

bind_interrupts!(struct Irqgs {

s
let
let

let

let

i2c.

let

i2c.

i2c.

T2C1_TRQ => InterruptHandler<I2C1>;

sda = p.PIN_14;
scl p.PIN_15;

mut i2c = i2c::I2c::new_async(p.I2C1, scl, sda, Irqgs, I2cConfig::default());

tx_buf = [0x907;
write(@x5e, &tx_buf).await.unwrap();

mut rx_buf = [0x00u8; 77;
read(@x5e, &mut rx_buf).await.unwrap();

write_read(@x5e, &tx_buf, &mut rx_buf).await.unwrap();



Sensors

Analog and Digital Sensors



Bibliography
for this section

BOSCH, BMP280 Digital Pressure Sensor

= Chapter 3 - Functional Description
= Chapter 4 - Global memory map and register description
= Chapter 5 - Digital Interfaces

= Subchapter 5.2 - I2C Interface


https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

Sensors

analog and digital

Analog

= only the transducer (the analog sensor)
= outputs (usually) voltage
® requires:

= an ADC to be read

= cleaning up the noise

Voltage
((. ) Output

Digital

= consists of:
= atransducer (the analog sensor)
= an ADC
= an MCU for cleaning up the noise

= outputs data using a digital bus

Digital

Interface I/0 Bus
Regl
RegN J




BMP280 Digital Pressure Sensor

schematics

Datasheet

Pressure/
temperature
sensing
element

VDD"' VDDlo,_|
| |
Voltage Voltage
regulator reference
(analog &
digital) | | Lepi
n
t
—{1SDO
fAnalogd N .- B | .
ront-en Lol S
Fliisck
a
c
e
OSC|POR|NVM csB
osclPoriNvM] |
GND™—



https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

BMP280 Digital Pressure Sensor

registers map

Datasheet

Register Name Address bit7 bité bit5 bit4 bit3 bit2 bit1 bit0 l:te:t:t
temp xIsb 0xFC temp xIsb<7:4> 0 0 0 0 0x00
temp Isb 0OxFB temp Isb<7:0> 0x00
temp msb OxFA temp _msb<7:0> 0x80
press xisb 0OxF9 press xlsb<7:4> [ 0 0 0 | 0 0x00
press Isb 0xF8 press Isb<7.0> 0x00
press_msb 0xF7 press_msb<7:0> 0x80
config 0xF5 t_sb[2:0] filter[2:0] . |spiaw enfo] 0x00
ctrl_meas OxF4 osrs t[2:0] osrs_p[2:0] mode[1:0] 0x00
status 0xF3 S “‘IilliilliIilimeasuringIO][lIillIIllIilliillIIilIIilIIillIilIIiim update[O] 0x00
reset 0xEOQ reset[7:0] 0x00
id 0xD0 chip_id[7:0] 0x58
calib25...calib00 [OxA1...0x88 calibration data individual
Registers: | | Calibration CO_ntroI D_ata St_atus Revision Reset
data reqgisters registers registers
Type: read only |read/write| read only | read only | read only | write only



https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

Reading from a digital sensor

using synchronous/asynchronous 12C to read the press_lsb register of BMP280

O 00 N O LT A W N B

IR
P o

const DEVICE_ADDR: u8 = ©Ox77;
const REG_ADDR: u8 = Ox£f8;

let mut buf = [0x00u8];

i2c.write_read(
DEVICE_ADDR, &[REG_ADDRT], &mut buf

).unwrap();

// use the value
let pressure_Llsb = buf[1l];

O 00 N O LT DN W N B

N
NS

const DEVICE_ADDR: u8 = ©Ox77;
const REG_ADDR: u8 = 0Ox£f8;

let mut buf = [0x00u8];
i2c.write_read(
DEVICE_ADDR, &[REG_ADDR], &mut buf

).await.unwrap();

// use the value
let pressure_lsb = buf[1l];



Writing to a digital sensor

using synchronous/asynchronous 12C to set up the ctrl_meas register of the BMP280 sensor

const DEVICE_ADDR: u8 = ©Ox77;
const REG_ADDR: u8 = Oxf4;

const DEVICE_ADDR: u8 = ©Ox77;
const REG_ADDR: u8 = 0xf4;

// see subchapters 3.3.2, 3.3.1 and 3.6
let value = 0bl00_010_11;

// see subchapters 3.3.2, 3.3.1 and 3.6
let value = 0bl00_010_11;

let buf = [REG_ADDR, value];
i2c.write(DEVICE_ADDR, &buf).unwrap();

let buf = [REG_ADDR, value];
i2c.write(DEVICE_ADDR, &buf).await.unwrap();

0O N O U1 A WNWDN B
0 N O U1 A WN R



USB 2.0

Universal Serial Bus



Universal Serial Bus @

2.0

=  Used for communication between a host and several
devices that each provide functions

= Two modes:
= host - initiates the communication (usually a Savizadl
computer)

= device - receives and transmits data when the host

requests it

Device 3 Device 2

= each device has a 7 bit address assigned upon
connect
= maximum 127 devices connected to a USB host Device 4 Device 5
= devices are interconnected using hubs

m  USB devices tree




Bibliography

for this section

1. Raspberry Pi Ltd, RP2350 Datasheet

=  Chapter 12 - Peripherals
= Chapter 12.7 - USB

2. USB Made Simple


https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://www.usbmadesimple.co.uk/

USB

= canwork as host or device, but
not at the same time

= uses a differential line for
transmission

= uses a 48 MHz clock

= maximum 16 endpoints (buffers)
= |N-from device to host
= QOUT - from host to device

= endpoints 0 IN and OUT are used

for control

48 MHz

Clock

/

Endpoints

-

OIN

\
>

0 OuUT

1IN

10UT

2 1IN

20uUT

USB Device

\

Status Register

DP

DM



USB Packet

the smallest element of data transmission

Token
34 27 26 2322 1918 12 11 8 7
000O0O0OO0O1 IPID PID ADDR ENDP CRC 00J
SYNC Inverted  Packet ID Address Endpoint Endpoint EOP
Packet ID
Data
46 3938 3534 3130 2322 1918 2 0
00000O0O01| !PID PID 0 - 1024 bytes ENDP CRC 00J
SYNC Inverted Packet ID Data Endpoint Endpoint EOP
Packet ID
Handshake
18 1110 7 6 32 0
0000O0O0O0OT1 IPID PID 00J

SYNC

Inverted PacketID EOP

Packet ID




Token Packet

usually asks for a data transmission

Type PID

ourt 0001
IN 1001
SETUP 1101

Address: ADDR : ENDP

34 27 26

Description

host wants to transmit data to the device

host wants to receive data from the device

host wants to setup the device

2322

1918

1211 8

7

000OOOTO 01

IPID

PID

ADDR

ENDP

CRC

00J

'SYNC

Inverted
Packet ID

Packet ID Address

Elndiooirln

IEnldpolintl

EOP




Data Packet

transmits data
Type PID
DATAO 0011

DATA1I 1011

Description

Data can be between 0 and 1024 bytes

the data packet follows after a DATA®@ packet

the data packet is the first one or follows after a DATA1 packet

46 3938 3534 3130 2322 1918 32 0
00000O0O01| !'PID PID 0 - 1024 bytes ENDP CRC 00J
SYNC Inverted Packet ID Data Endpoint Endpoint EOP

Packet ID



Handshake Packet

acknowledges data

Type PID

ACK 0010
NACK 1010
STALL 1110

Description

data has been successfully received

data has not been successfully received

the device has an error

18

1110

7

6

3

2

0

0000O0OO0O0OT1

IPID

PID

00J

SYNC

Inverted PacketID EOP

Packet ID




Transmission Modes

= Control - used for configuration
= Jsochronous - used for high bandwidth, best effort
»  Bulk-used for low bandwidth, stream

= [nterrupt - used for low bandwidth, guaranteed latency



Control

used to control a device - ask for data

Setup - send a command (GET DESCRIPTOR,...)

Error

Handshake
ACK

Data - optional several transfers, host transfers data

Error

Handshake
ACK

Error

Handshake
ACK

Error

Status - report the status to the host

Error

N

Handshake
ACK



Control

used to control a device - send data

Setup - send a command (SET ADDRESS,...)

Error

Handshake
ACK

Data - optional several transfers, device transfers the
requested data

Handshake
ACK

Error

Handshake
ACK

Error

Status - report the status to the device

Error

N

Handshake
ACK



Isochronous

fast but not reliable transfer

= has a guaranteed bandwidth
= allows data loss

= used for functions like streaming where loosing a packet has a minimal impact
OUT - transfer data from the host to the device IN - transfer data from the device to the host

Error Error




Bulk

slow, but reliable transfer

= does not have a guaranteed bandwidth
= does not allow data loss

= used for large data transfers where loosing packets is not permitted

OUT - transfer data from the host to the device IN - transfer data from the device to the host

Error

Packet Error

— Handshake
NACK

. Handshake Reset
Device Error—» .
STALL Endpoint

Handshake
ACK

payload
< 64 bytes?



Interrupt

transfer data at a minimum time interval

= the endpoint descriptor asks the host start an interrupt transfer at a time interval

= used for sending and receiving data at certain intervals

OUT - transfer data from the host to the device

) Handshake
Device Error—»
STALL

Handshake
NACK

Handshake
ACK

Error

Reset
Endpoint

Device Error—»

Error

IN - transfer data from the device to the host

Handshake Reset
STALL Endpoint

Handshake
NACK

Handshake
ACK

7




Device

Device Organization

bNum Configurations

configuration, interfaces, endpoints

e { ........ - Other
N Configuration
. . . Configuration AN Descriptors
= a device can have multiple configurations Descriptor .

N
| bNumIrterfaces Nemmmoo -

= for instance different functionality based on

Interface
Descriptor

power consumption
. . . bNumEndpoints
= a configuration has multiple interfaces
Endpoint
Descriptor

= adevice can perform multiple functions

Descriptor

»  Serial Port

Interface

» each interface has alternate settings with multiple Deseriptor

'
'
'
'
'
)
'
'
)
'
'
)
'
'
'
'
'
'
'
'
'
'
'
|
'
Endpoint
= Debugger : poi

'
'
'
'
'
'
'
I
| bNumEndpoints
'

'

'

'

'

'

'

'

'

'

'

'

'

'

endpoints attached —
. Descriptor
= endpoints are used for data transfer
. . Endpoint
= maximum 16 endpoints, can be configured IN and Descriptor

OUT

= the device reports the descriptors in this order



Connection

Host
device plugged in, Reset
---------------- > Device
SETUP: GET_DEVICE_DESCRIPTOR (address 0, EP 0 IN)
DATA: Device Descriptor (EP 0 IN) H
e m e e
Reset
............................. >
SETUP: SET_ADDRESS (A) (address 0, EP 0 OUT)
ACK: (EP 0 OUT) H
Lo e ettt e e e e mm e e m e e
SETUP: GET_DEVICE_DESCRIPTOR (address A, EP 0 IN)
DATA: Device Descriptor (EP 0 IN)
| e e e e mm e e mm e e maeeanaaas
ACK (EP 0 IN)
SETUP: GET_CONFIGURATION_DESCRIPTOR (1) (address A, EP 0 IN)
DATA: Configuration Descriptor (EP 0 IN)
ACK (EP 0 IN)
SETUP: SET_CONFIGURATION (1) (address A, EP 0 OUT)
ACK (EP 0 OUT) H
Host Device

Token SETUP Packet

The DATA packet of the SETUP Control Transfer

63 56 55 48 47 32

| bmRequestType | bRequest | wValue |
Specific to request Value

31 16 15 0

| windex | wLength |

Index of offset

bmRequestType field

Number of bytes to transfer in DATA step

7 6 5 4 0
l Direction [ Type [ Recipient
0 - Host to Device 00 - Standard 00000 - Device
1 - Device to Host 01 - Class 00001 - Interface
10 - Vendor 00010 - Endpoint
11 - Reserved 00011 - Other

00100 - 11111 - Reserved



Device Classes

predefined devices types

Device Class Code

0x00

ox01

0x02

0x03

0x05

0x06

ox07

0x08

0x0A

0x0B

ox0D

Ox@E

Ox0F

0x10

ox11

ox12

OxFF

Class Name

Device Class

Audio

Communications and CDC Control
HID (Human Interface Device)
Physical Interface Device (PID)
Image

Printer

Mass Storage

Still Image Capture Device
Smart Card

Content Security

Video

Personal Healthcare
Audio/Video

Health Device

Diagnostic Device

Vendor Specific

Description
Device class-specific; the class code is assigned by the device.

Audio devices (e.g., audio interfaces, speakers, microphones).

Devices related to communication (e.g., modems, network adapters).

Devices like keyboards, mice, and other human interface devices.
Devices that require physical input/output (e.g., game controllers).
Image devices such as digital cameras and scanners.

Devices for printing (e.g., printers).

Mass storage devices (e.g., USB flash drives, external hard drives).
Devices for still image capture (e.g., digital cameras).

Smart card readers and related devices.

Devices for content protection (e.g., video players).

Video devices (e.g., webcams, video capture devices).

Healthcare devices (e.g., thermometers, blood pressure monitors).
Devices with combined audio/video functions.

Devices used in health-related monitoring.

Devices for diagnostics or test instruments.

Vendor-specific devices (class code not assigned by USB standard).



Device Descriptor

describes the whole device

Field Value
bLength 18
bDescriptorType 1
bcdUSB 0x0200
bDeviceClass OxFF
bDeviceSubClass ]
bDeviceProtocol 0
bMaxPacketSize0 64
idVendor 0xCODE
idProduct OxCAFE
bedDevice 0x0100
iManufacturer 1
iProduct 2
iSerialNumber 3
bNumConfigurations 1

Description

Descriptor length in bytes.

Descriptor type (1 = Device Descriptor).

USB specification release number (2.0).

Device class (OXFF = Vendor Specific).

Device subclass (0 = defined by the interface).
Device protocol (0 = defined by the interface).
Maximum packet size for endpoint 0 (64 bytes).
Vendor ID (example: @xCODE ).

Product ID (example: @xCAFE ).

Device release number (example: 1.0 ).

Index of the string descriptor for the manufacturer.

Index of the string descriptor for the product.

Index of the string descriptor for the serial number.

Number of configurations supported by the device.



Configuration Descriptor

one of the configurations

Field

bLength
bDescriptorType
wTotalLength
bNumlInterfaces
bConfigurationValue
iConfiguration
bmAttributes

bMaxPower

Value
9
2
0x0022
1
1
4
0x80

50

Description
Descriptor length in bytes (always 9 for configuration descriptor).

Descriptor type (2 = Configuration Descriptor).

Total length of data returned for this configuration (including all descriptors).

Number of interfaces supported by this configuration.

Value to select this configuration.

Index of the string descriptor describing the configuration.
Configuration characteristics (bus-powered, no remote wake-up).

Maximum power consumption (in 2mA units,so 50 means 100mA).



Interface Descriptor

Field

bLength
bDescriptorType
binterfaceNumber
bAlternateSetting
bNumEndpoints
binterfaceClass
binterfaceSubClass
binterfaceProtocol

ilnterface

Value

9

Description

Descriptor length in bytes (always 9 for interface descriptor).
Descriptor type (4 = Interface Descriptor).

Number of this interface (starting from 0).

Alternate setting (0 = default setting).

Number of endpoints used by this interface.

Interface class (OXFF = Vendor Specific).

Interface subclass (0 = vendor specific).

Interface protocol (0 = vendor specific).

Index of the string descriptor describing this interface.



Endpoint Descriptor

Field Value Description
bLength 7 Descriptor length in bytes (always 7 for endpoint descriptor).
bDescriptorType 5 Descriptor type (5 = Endpoint Descriptor).

. Endpoint address ( @x81 ): Bit 7 indicates IN direction (device to host), and Bits 0-3 indicate the endpoint number
bEndpointAddress 0xbl_0000_001 . .
( 1 inthis case).

bmAttributes 0x02 Endpoint attributes ( @x02 = Bulk endpoint).
wMaxPacketSize 64 Maximum packet size the endpoint can handle (64 bytes).

binterval 0 Interval for polling (relevant for interrupt endpoints; @ for others).



Strings Descriptor

String Descriptor for Configuration and Interface

Field Value Description

Descriptor length in bytes (always 4 for string descriptor
bLength 4
header).

bDescriptorType 3 Descriptor type (3 = String Descriptor).

. Ox09 Ox55 Ox53 Ox42 Ox20 0Ox43 Ox6F Ox6E 0x66 0Ox69 0Ox67 0x20 . ) -
bString - UTF-16LE string encoding: "USB Config 1" .
X

Explanation: This string descriptor corresponds to Configuration 1. The string is encoded in UTF-16LE (little-
endian). Each character is represented by two bytes.



USB 1.0 and 2.0 Modes

Mode Speed
Low Speed 1.5 Mbit/s
Full Speed 12 Mbit/s
High Speed 480 Mbit/s

Version

1.0

1.0

2.0



Facts

Transmission
Clock

Wires
Devices

Speed

half duplex

independent

DpP /DM

1 host
several devices

480 MBbit/s

data must be sent in one direction at one time
the host and the device must synchronize their clocks

data is sent in a differential way

a receiver and a transmitter



Embassy API

for RP2350, setup the device

O 00 N O L1 D N N B

T Y
Ui A W N PO

use embassy_rp::usb::{Driver, InterruptHandler};

use embassy_usb::Config;

bind_interrupts!(struct Irqgs {
USBCTRL_IRQ => InterruptHandler<USB>;
s

let mut config = Config: :new(@xc@de, Oxcafe);
config.manufacturer = Some('"Embassy");
config.product = Some("USB sender receiver');
config.serial_number = Some('"12345678");
config.max_power = 100;
config.max_packet_size @ = 64;

let driver = Driver::new(p.USB, Irqgs);



Embassy API

for RP2350, setup the descriptors

1

14
15
16
17
18
19
20
21

use embassy_usb::msos::{self, windows_version};

// Required for Windows
const DEVICE_INTERFACE_GUIDS: &[&str] = &["{AFBO9A6FB-30BA-44BC-9232-806CFC875321}"];
builder.msos_descriptor(windows_version::WIN8_1, 0);
builder.msos_feature(msos: :CompatibleIdFeatureDescriptor: :new("WINUSB", )
builder.msos_feature(msos: :RegistryPropertyFeatureDescriptor: :new(
DeviceInterfaceGUIDs",
msos: :PropertyData: :RegMultiSz(DEVICE_INTERFACE_GUIDS),

D)5



Embassy API

for RP2350, setup the device’s function and start

O 00 N O L1 D W N B

N Y
A WN PO

// Add a vendor-specific function (class OxFF), and corresponding interface,

// that uses our custom handler.

let mut function = builder.function(@xFF, 0,
let mut interface = function.interface();
let mut alt = interface.alt_setting(OxFF, 0,
let mut read_ep = alt.endpoint_bulk_out(64);
let mut write_ep = alt.endpoint_bulk_in(64);
drop(function);

// Build the builder.
let mut usb = builder.build();

// Create the USB device handler
let usb_run = usb.run();

0);

@, None);



Embassy API

for RP2350, use the USB device

O 00 N O L1 D W N B

10
11
12
13
14
15
16
17
18
19
20
21
22

let echo_run = async {
loop {

%8

3

read_ep.wait_enabled().await;
info!("Connected");
loop {
let mut data = [0@; 64];
match read_ep.read(&mut data).await {
Ok(n) => {
info!("Got bulk: {:a}", data[..n]);
// Echo back to the host:
write_ep.write(&data[..n]).await.ok();

3
Err(_) => break,

3

info!("Disconnected");

// Run everything concurrently.

// If we had made everything

joinCusb_run, echo_run).await;

“'static’ above instead, we could do this using separate tasks instead.



Host API

using nusb
1 use nusb::transfer: :RequestBuffer;
2
3 const BULK_OUT_EP: u8 = 0x01;
4 const BULK_IN EP: u8 = 0x81;
5
6 async fn main() {
7 let di = nusb::list_devices()
8 .unwrap()
9 .find(|d| d.vendor_id() == @xc@de && d.product_id() == Oxcafe)
10 .expect('no device found");
11
12 let device = di.open().expect('"error opening device');
13 let interface = device.claim_interface(@).expect("error claiming interface");
14
15 let result = interface.bulk_out(BULK_OUT_EP, b"hello world".into()).await;
16 println!("{result:?}");
17
18 let result = interface.bulk_in(BULK_IN_EP, RequestBuffer::new(64)).await;
19 println!("{result:?}");
20 }



Host API

using Python
1 import usb
2 import time
3
4 # Find the USB device
5 dev = usb.core.find(idVendor=0xc@de, idProduct=0xcafe)
6 if dev is None:
7 raise ValueError('Device not found')
8
S dev.set_configuration() # Set the active configuration (this is usually required after device detection)
10
11 OUT_ENDPOINT = 0x01 # Usually 0x01 for OUT endpoint
12 IN_ENDPOINT = 0x81 # Usually 0x81 for IN endpoint (Endpoint 1, Direction IN)
13
14 data_to_send = b"Hello, USB Device!
15
16 dev.write(OUT_ENDPOINT, data_to_send)
17 time.sleep(l) # Wait for a short time to ensure data is transferred
18
19 data_received = dev.read(IN_ENDPOINT, 64) # Read 64 bytes (adjust the size if needed)
20 print("Data received from device:'", bytes(data_received))
21
22 usb.util .release_interface(dev, @) # Release the device interface (optional, but good practice)



Conclusion

we talked about

= Buses
= Inter-Integrated Circuit

»  Universal Serial Bus v2.0



